
1 | P a g e

 PhpT Point, Simply Easy Learning

The PHP Hypertext Pre-processor (PHP) is a programming language that allows web

developers to create dynamic content that interacts with databases.

PHP is basically used for developing web based software applications.

This tutorial helps you to build your base with PHP.

PHP started out as a small open source project that evolved as more and more people found out

how useful it was. Rasmus Lerdorf unleashed the first version of PHP way back in 1994.

 PHP is a recursive acronym for "PHP: Hypertext Preprocessor".

 PHP is a server side scripting language that is embedded in HTML. It is used to manage

dynamic content, databases, session tracking, even build entire e-commerce sites.

 It is integrated with a number of popular databases, including MySQL, PostgreSQL,

Oracle, Sybase, Informix, and Microsoft SQL Server.

 PHP is pleasingly zippy in its execution, especially when compiled as an Apache module

on the Unix side. The MySQL server, once started, executes even very complex queries

with huge result sets in record-setting time.

 PHP supports a large number of major protocols such as POP3, IMAP, and LDAP. PHP4

added support for Java and distributed object architectures (COM and CORBA), making

n-tier development a possibility for the first time.

 PHP is forgiving: PHP language tries to be as forgiving as possible.

 PHP Syntax is C-Like.

Common uses of PHP:

 PHP performs system functions, i.e. from files on a system it can create, open, read,

write, and close them.

 PHP can handle forms, i.e. gather data from files, save data to a file, thru email you can

send data, return data to the user.

 You add, delete, modify elements within your database thru PHP.

 Access cookies variables and set cookies.

 Using PHP, you can restrict users to access some pages of your website.

 It can encrypt data.

Characteristics of PHP

Five important characteristics make PHP's practical nature possible:

 Simplicity

 Efficiency

 Security

 Flexibility

 Familiarity

"Hello World" Script in PHP:

To get a feel for PHP, first start with simple PHP scripts. Since "Hello, World!" is an essential
example, first we will create a friendly little "Hello, World!" script.

As mentioned earlier, PHP is embedded in HTML. That means that in amongst your normal HTML

(or XHTML if you're cutting-edge) you'll have PHP statements like this:

2 | P a g e

 PhpT Point, Simply Easy Learning

It will produce following result:

<html>

<head>

<title>Hello World</title>

<body>

<?php echo "Hello, World!";?>

</body>

</html>

3 | P a g e

 PhpT Point, Simply Easy Learning

If you examine the HTML output of the above example, you'll notice that the PHP code is not
present in the file sent from the server to your Web browser. All of the PHP present in the Web

page is processed and stripped from the page; the only thing returned to the client from the

Web server is pure HTML output.

All PHP code must be included inside one of the three special markup tags ate are recognised by

the PHP Parser.

Most common tag is the <?php...?> and we will also use same tag in our tutorial.

From the next chapter we will start with PHP Environment Setup on your machine and then we

will dig out almost all concepts related to PHP to make you comfortable with the PHP language.

PHP Environment Setup

In order to develop and run PHP Web pages three vital components need to be installed on your

computer system.

 Web Server - PHP will work with virtually all Web Server software, including Microsoft's

Internet Information Server (IIS) but then most often used is freely availble Apache

Server. Download Apache for free here: http://httpd.apache.org/download.cgi

 Database - PHP will work with virtually all database software, including Oracle and

Sybase but most commonly used is freely available MySQL database. Download MySQL

for free here: http://www.mysql.com/downloads/index.html

 PHP Parser - In order to process PHP script instructions a parser must be installed to

generate HTML output that can be sent to the Web Browser. This tutorial will guide you

how to install PHP parser on your computer.

PHP Parser Installation:

Before you proceed it is important to make sure that you have proper environment setup on

your machine to develop your web programs using PHP.

Type the following address into your browser's address box.

If this displays a page showing your PHP installation related information then it means you have

PHP and Webserver installed properly. Otherwise you have to follow given procedure to install
PHP on your computer.

http://127.0.0.1/info.php

<?php PHP code goes here ?>

<? PHP code goes here ?>

<script language="php"> PHP code goes here </script>

Hello, World!

http://httpd.apache.org/download.cgi
http://www.mysql.com/downloads/index.html
http://127.0.0.1/info.php

4 | P a g e

 PhpT Point, Simply Easy Learning

Apache Configuration:

If you are using Apache as a Web Server then this section will guide you to edit Apache

Configuration Files.

PHP.INI File Configuration:

The PHP configuration file, php.ini, is the final and most immediate way to affect PHP's

functionality.

Windows IIS Configuration:

To configure IIS on your Windows machine you can refer your IIS Reference Manual shipped

along with IIS.

PHP Syntax Overview

This chapter will give you an idea of very basic syntax of PHP and very important to make your

PHP foundation strong.

Escaping to PHP:

The PHP parsing engine needs a way to differentiate PHP code from other elements in the page.
The mechanism for doing so is known as 'escaping to PHP.' There are four ways to do this:

Canonical PHP tags:

The most universally effective PHP tag style is:

If you use this style, you can be positive that your tags will always be correctly interpreted.

Short-open (SGML-style) tags:

Short or short-open tags look like this:

Short tags are, as one might expect, the shortest option You must do one of two things to

enable PHP to recognize the tags:

 Choose the --enable-short-tags configuration option when you're building PHP.

 Set the short_open_tag setting in your php.ini file to on. This option must be disabled

to parse XML with PHP because the same syntax is used for XML tags.

ASP-style tags:

<?...?>

<?php...?>

5 | P a g e

 PhpT Point, Simply Easy Learning

ASP-style tags mimic the tags used by Active Server Pages to delineate code blocks. ASP-style

tags look like this:

To use ASP-style tags, you will need to set the configuration option in your php.ini file.

HTML script tags:

HTML script tags look like this:

Commenting PHP Code:

A comment is the portion of a program that exists only for the human reader and stripped out
before displaying the programs result. There are two commenting formats in PHP:

Single-line comments: They are generally used for short explanations or notes relevant to the

local code. Here are the examples of single line comments.

Multi-lines printing: Here are the examples to print multiple lines in a single print statement:

Multi-lines comments: They are generally used to provide pseudocode algorithms and more

detailed explanations when necessary. The multiline style of commenting is the same as in C.
Here are the example of multi lines comments.

<?

/* This is a comment with multiline
Author : Mohammad Mohtashim
Purpose: Multiline Comments Demo
Subject: PHP

*/

print "An example with multi line comments";

<?

First Example
print <<<END

This uses the "here document" syntax to output
multiple lines with $variable interpolation. Note
that the here document terminator must appear on a
line with just a semicolon no extra whitespace!

END;

Second Example
print "This spans

multiple lines. The newlines will be
output as well";

?>

<?

This is a comment, and

This is the second line of the comment

// This is a comment too. Each style comments only
print "An example with single line comments";

?>

<script language="PHP">...</script>

<%...%>

6 | P a g e

 PhpT Point, Simply Easy Learning

PHP is whitespace insensitive:

Whitespace is the stuff you type that is typically invisible on the screen, including spaces, tabs,

and carriage returns (end-of-line characters).

PHP whitespace insensitive means that it almost never matters how many whitespace

characters you have in a row.one whitespace character is the same as many such characters

For example, each of the following PHP statements that assigns the sum of 2 + 2 to the variable
$four is equivalent:

PHP is case sensitive:

Yeah it is true that PHP is a case sensitive language. Try out following example:

This will produce following result:

Statements are expressions terminated by semicolons:

A statement in PHP is any expression that is followed by a semicolon (;).Any sequence of valid

PHP statements that is enclosed by the PHP tags is a valid PHP program. Here is a typical
statement in PHP, which in this case assigns a string of characters to a variable called
$greeting:

Expressions are combinations of tokens:

The smallest building blocks of PHP are the indivisible tokens, such as numbers (3.14159),
strings (.two.), variables ($two), constants (TRUE), and the special words that make up the

syntax of PHP itself like if, else, while, for and so forth

Braces make blocks:

$greeting = "Welcome to PHP!";

Variable capital is 67
Variable CaPiTaL is

<html>

<body>

<?

$capital = 67;

print("Variable capital is $capital
");
print("Variable CaPiTaL is $CaPiTaL
");

?>

</body>

</html>

$four = 2 + 2; // single spaces

$four <tab>=<tab2<tab>+<tab>2 ; // spaces and tabs

$four =
2+

2; // multiple lines

?>

7 | P a g e

 PhpT Point, Simply Easy Learning

Although statements cannot be combined like expressions, you can always put a sequence of
statements anywhere a statement can go by enclosing them in a set of curly braces.

Here both statements are equivalent:

Running PHP Script from Command Prompt:

Yes you can run your PHP script on your command prompt. Assuming you have following

content in test.php file

Now run this script as command prompt as follows:

It will produce following result:

Hope now you have basic knowledge of PHP Syntax.

PHP Variable Types

The main way to store information in the middle of a PHP program is by using a variable.

Here are the most important things to know about variables in PHP.

 All variables in PHP are denoted with a leading dollar sign ($).

 The value of a variable is the value of its most recent assignment.

 Variables are assigned with the = operator, with the variable on the left-hand side and

the expression to be evaluated on the right.

 Variables can, but do not need, to be declared before assignment.

 Variables in PHP do not have intrinsic types - a variable does not know in advance

whether it will be used to store a number or a string of characters.

 Variables used before they are assigned have default values.

 PHP does a good job of automatically converting types from one to another when

necessary.

 PHP variables are Perl-like.

PHP has a total of eight data types which we use to construct our variables:

 Integers: are whole numbers, without a decimal point, like 4195.

Hello PHP!!!!!

$ php test.php

<?php

echo "Hello PHP!!!!!";

?>

if (3 == 2 + 1)

print("Good - I haven't totally lost my mind.
");

if (3 == 2 + 1)

{

print("Good - I haven't totally");
print("lost my mind.
");

}

8 | P a g e

 PhpT Point, Simply Easy Learning

 Doubles: are floating-point numbers, like 3.14159 or 49.1.

 Booleans: have only two possible values either true or false.

 NULL: is a special type that only has one value: NULL.

 Strings: are sequences of characters, like 'PHP supports string operations.'

 Arrays: are named and indexed collections of other values.

 Objects: are instances of programmer-defined classes, which can package up both

other kinds of values and functions that are specific to the class.

 Resources: are special variables that hold references to resources external to PHP

(such as database connections).

The first five are simple types, and the next two (arrays and objects) are compound - the

compound types can package up other arbitrary values of arbitrary type, whereas the simple

types cannot.

We will explain only simile data type in this chapters. Array and Objects will be explained

separately.

Integers:

They are whole numbers, without a decimal point, like 4195. They are the simplest type .they

correspond to simple whole numbers, both positive and negative. Integers can be assigned to

variables, or they can be used in expressions, like so:

Integer can be in decimal (base 10), octal (base 8), and hexadecimal (base 16) format. Decimal
format is the default, octal integers are specified with a leading 0, and hexadecimals have a

leading 0x.

For most common platforms, the largest integer is (2**31 . 1) (or 2,147,483,647), and the

smallest (most negative) integer is . (2**31 . 1) (or .2,147,483,647).

Doubles:

They like 3.14159 or 49.1. By default, doubles print with the minimum number of decimal
places needed. For example, the code:

It produces the following browser output:

Boolean:

They have only two possible values either true or false. PHP provides a couple of constants

especially for use as Booleans: TRUE and FALSE, which can be used like so:

if (TRUE)

print("This will always print
");
else

2.28888 + 2.21112 = 4.5

$many = 2.2888800;

$many_2 = 2.2111200;

$few = $many + $many_2;

print(.$many + $many_2 = $few
.);

$int_var = 12345;

$another_int = -12345 + 12345;

9 | P a g e

 PhpT Point, Simply Easy Learning

Interpreting other types as Booleans:

Here are the rules for determine the "truth" of any value not already of the Boolean type:

 If the value is a number, it is false if exactly equal to zero and true otherwise.

 If the value is a string, it is false if the string is empty (has zero characters) or is the

string "0", and is true otherwise.

 Values of type NULL are always false.

 If the value is an array, it is false if it contains no other values, and it is true otherwise.
For an object, containing a value means having a member variable that has been

assigned a value.

 Valid resources are true (although some functions that return resources when they are

successful will return FALSE when unsuccessful).

 Don't use double as Booleans.

Each of the following variables has the truth value embedded in its name when it is used in a

Boolean context.

NULL:

NULL is a special type that only has one value: NULL. To give a variable the NULL value, simply

assign it like this:

The special constant NULL is capitalized by convention, but actually it is case insensitive; you

could just as well have typed:

A variable that has been assigned NULL has the following properties:

 It evaluates to FALSE in a Boolean context.

 It returns FALSE when tested with IsSet() function.

Strings:

They are sequences of characters, like "PHP supports string operations". Following are valid

examples of string

$string_1 = "This is a string in double quotes";

$string_2 = "This is a somewhat longer, singly quoted string";

$string_39 = "This string has thirty-nine characters";

$string_0 = ""; // a string with zero characters

$my_var = null;

$my_var = NULL;

$true_num = 3 + 0.14159;

$true_str = "Tried and true"

$true_array[49] = "An array element";

$false_array = array();

$false_null = NULL;

$false_num = 999 - 999;

$false_str = "";

print("This will never print
");

10 | P a g e

 PhpT Point, Simply Easy Learning

Singly quoted strings are treated almost literally, whereas doubly quoted strings replace

variables with their values as well as specially interpreting certain character sequences.

This will produce following result:

There are no artificial limits on string length - within the bounds of available memory, you ought
to be able to make arbitrarily long strings.

Strings that are delimited by double quotes (as in "this") are preprocessed in both the following

two ways by PHP:

 Certain character sequences beginning with backslash (\) are replaced with special
characters

 Variable names (starting with $) are replaced with string representations of their

values.

The escape-sequence replacements are:

 \n is replaced by the newline character

 \r is replaced by the carriage-return character

 \t is replaced by the tab character

 \$ is replaced by the dollar sign itself ($)

 \" is replaced by a single double-quote (")

 \\ is replaced by a single backslash (\)

Here Document:

You can assign multiple lines to a single string variable using here document:

<?php

$channel =<<<_XML_

<channel>

<title>What's For Dinner<title>

<link>http://menu.example.com/<link>

<description>Choose what to eat tonight.</description>

</channel>

XML;

echo <<<END

This uses the "here document" syntax to output
multiple lines with variable interpolation. Note
that the here document terminator must appear on a
line with just a semicolon. no extra whitespace!

My $variable will not print!\n
My name will print

<?

$variable = "name";

$literally = 'My $variable will not print!\\n';
print($literally);

$literally = "My $variable will print!\\n";
print($literally);

?>

http://menu.example.com/

11 | P a g e

 PhpT Point, Simply Easy Learning

This will produce following result:

Variable Scope:

Scope can be defined as the range of availability a variable has to the program in which it is

declared. PHP variables can be one of four scope types:

 Local variables

 Function parameters

 Global variables

 Static variables

Variable Naming:

Rules for naming a variable is:

 Variable names must begin with a letter or underscore character.

 A variable name can consist of numbers, letters, underscores but you cannot use

characters like + , - , % , (,) . & , etc

There is no size limit for variables.

PHP Constants

A constant is a name or an identifier for a simple value. A constant value cannot change during

the execution of the script. By default a constant is case-sensitive. By convention, constant
identifiers are always uppercase. A constant name starts with a letter or underscore, followed by

any number of letters, numbers, or underscores. If you have defined a constant, it can never be

changed or undefined.

To define a constant you have to use define() function and to retrieve the value of a constant,
you have to simply specifying its name. Unlike with variables, you do not need to have a

constant with a $. You can also use the function constant() to read a constant's value if you

wish to obtain the constant's name dynamically.

constant() function:

As indicated by the name, this function will return the value of the constant.

This is useful when you want to retrieve value of a constant, but you do not know its name, i.e.
It is stored in a variable or returned by a function.

This uses the "here document" syntax to output
multiple lines with variable interpolation. Note
that the here document terminator must appear on a
line with just a semicolon. no extra whitespace!

<channel>

<title>What's For Dinner<title>

<link>http://menu.example.com/<link>

<description>Choose what to eat tonight.</description>

END;

print $channel;

?>

http://www.phptpoint.com/php/php-variables/
http://www.phptpoint.com/php/php-function/
http://www.phptpoint.com/php/php-variables/php-super-global-variables/
http://www.phptpoint.com/php/php-function/
http://menu.example.com/

12 | P a g e

 PhpT Point, Simply Easy Learning

constant() example:

Only scalar data (boolean, integer, float and string) can be contained in constants.

Differences between constants and variables are:

 There is no need to write a dollar sign ($) before a constant, where as in Variable one

has to write a dollar sign.

 Constants cannot be defined by simple assignment, they may only be defined using the

define() function.

 Constants may be defined and accessed anywhere without regard to variable scoping

rules.

 Once the Constants have been set, may not be redefined or undefined.

Valid and invalid constant names:

PHP Magic constants:

PHP provides a large number of predefined constants to any script which it runs.

There are five magical constants that change depending on where they are used. For example,
the value of LINE depends on the line that it's used on in your script. These special
constants are case-insensitive and are as follows:

A few "magical" PHP constants ate given below:

Name Description

 LINE The current line number of the file.

 FILE The full path and filename of the file. If used inside an include,the name of

the included file is returned. Since PHP 4.0.2, FILE always contains

an absolute path whereas in older versions it contained relative path under

some circumstances.

 FUNCTION__ The function name. (Added in PHP 4.3.0) As of PHP 5 this constant returns

the function name as it was declared (case-sensitive). In PHP 4 its value is

// Valid constant names
define("ONE", "first thing");
define("TWO2", "second thing");
define("THREE_3", "third thing")

// Invalid constant names
define("2TWO", "second thing");
define(" THREE ", "third value");

<?php

define("MINSIZE", 50);

echo MINSIZE;

echo constant("MINSIZE"); // same thing as the previous line

?>

13 | P a g e

 PhpT Point, Simply Easy Learning

 always lowercased.

 CLASS The class name. (Added in PHP 4.3.0) As of PHP 5 this constant returns the

class name as it was declared (case-sensitive). In PHP 4 its value is always

lowercased.

 METHOD__ The class method name. (Added in PHP 5.0.0) The method name is

returned as it was declared (case-sensitive).

PHP Operator Types

What is Operator? Simple answer can be given using expression 4 + 5 is equal to 9. Here 4

and 5 are called operands and + is called operator. PHP language supports following type of
operators.

 Arithmetic Operators

 Comparision Operators

 Logical (or Relational) Operators

 Assignment Operators

 Conditional (or ternary) Operators

Lets have a look on all operators one by one.

Arithmatic Operators:

There are following arithmatic operators supported by PHP language:

Assume variable A holds 10 and variable B holds 20 then:

Operator Description Example

+ Adds two operands A + B will give 30

- Subtracts second operand from the first A - B will give -10

* Multiply both operands A * B will give 200

/ Divide numerator by denumerator B / A will give 2

% Modulus Operator and remainder of

after an integer division

B % A will give 0

++ Increment operator, increases integer

value by one

A++ will give 11

14 | P a g e

 PhpT Point, Simply Easy Learning

-- Decrement operator, decreases integer

value by one

A-- will give 9

Comparison Operators:

There are following comparison operators supported by PHP language

Assume variable A holds 10 and variable B holds 20 then:

Operator Description Example

== Checks if the value of two operands are

equal or not, if yes then condition

becomes true.

(A == B) is not true.

!= Checks if the value of two operands are

equal or not, if values are not equal

then condition becomes true.

(A != B) is true.

> Checks if the value of left operand is

greater than the value of right operand,

if yes then condition becomes true.

(A > B) is not true.

< Checks if the value of left operand is

less than the value of right operand, if

yes then condition becomes true.

(A < B) is true.

>= Checks if the value of left operand is

greater than or equal to the value of

right operand, if yes then condition

becomes true.

(A >= B) is not true.

<= Checks if the value of left operand is

less than or equal to the value of right

operand, if yes then condition becomes

true.

(A <= B) is true.

Logical Operators:

There are following logical operators supported by PHP language

Assume variable A holds 10 and variable B holds 20 then:

15 | P a g e

 PhpT Point, Simply Easy Learning

Operator Description Example

and Called Logical AND operator. If both the

operands are true then then condition

becomes true.

(A and B) is true.

or Called Logical OR Operator. If any of

the two operands are non zero then

then condition becomes true.

(A or B) is true.

&& Called Logical AND operator. If both the

operands are non zero then then

condition becomes true.

(A && B) is true.

|| Called Logical OR Operator. If any of

the two operands are non zero then

then condition becomes true.

(A || B) is true.

! Called Logical NOT Operator. Use to

reverses the logical state of its

operand. If a condition is true then

Logical NOT operator will make false.

!(A && B) is false.

Assignment Operators:

There are following assignment operators supported by PHP language:

Operator Description Example

= Simple assignment operator,

Assigns values from right side

operands to left side operand

C = A + B will assigne value of A + B into C

+= Add AND assignment operator, It

adds right operand to the left

operand and assign the result to

left operand

C += A is equivalent to C = C + A

-= Subtract AND assignment

operator, It subtracts right

operand from the left operand and

assign the result to left operand

C -= A is equivalent to C = C - A

*= Multiply AND assignment operator,

It multiplies right operand with the

left operand and assign the result

C *= A is equivalent to C = C * A

16 | P a g e

 PhpT Point, Simply Easy Learning

 to left operand

/= Divide AND assignment operator,

It divides left operand with the

right operand and assign the result

to left operand

C /= A is equivalent to C = C / A

%= Modulus AND assignment operator,

It takes modulus using two

operands and assign the result to

left operand

C %= A is equivalent to C = C % A

Conditional Operator

There is one more operator called conditional operator. This first evaluates an expression for a

true or false value and then execute one of the two given statements depending upon the result
of the evaluation. The conditional operator has this syntax:

Operator Description Example

? : Conditional Expression If Condition is true ? Then value X :

Otherwise value Y

Operators Categories:

All the operators we have discussed above can be categorised into following categories:

 Unary prefix operators, which precede a single operand.

 Binary operators, which take two operands and perform a variety of arithmetic and

logical operations.

 The conditional operator (a ternary operator), which takes three operands and

evaluates either the second or third expression, depending on the evaluation of the first
expression.

 Assignment operators, which assign a value to a variable.

Precedence of PHP Operators:

Operator precedence determines the grouping of terms in an expression. This affects how an

expression is evaluated. Certain operators have higher precedence than others; for example,
the multiplication operator has higher precedence than the addition operator:

For example x = 7 + 3 * 2; Here x is assigned 13, not 20 because operator * has higher

precedenace than + so it first get multiplied with 3*2 and then adds into 7.

Here operators with the highest precedence appear at the top of the table, those with the lowest
appear at the bottom. Within an expression, higher precedence operators will be evaluated first.

Category Operator Associativity

17 | P a g e

 PhpT Point, Simply Easy Learning

Unary ! ++ -- Right to left

Multiplicative * / % Left to right

Additive + - Left to right

Relational < <= > >= Left to right

Equality == != Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /=

PHP Decision Making

The if, elseif ...else and switch statements are used to take decision based on the different
condition.

You can use conditional statements in your code to make your decisions. PHP supports following

threedecision making statements:

 if...else statement - use this statement if you want to execute a set of code when a

condition is true and another if the condition is not true

 elseif statement - is used with the if...else statement to execute a set of code

if one of several condition are true

 switch statement - is used if you want to select one of many blocks of code to be

executed, use the Switch statement. The switch statement is used to avoid long blocks

of if..elseif..else code.

The If...Else Statement

If you want to execute some code if a condition is true and another code if a condition is false,
use the if....else statement.

Syntax

Example

The following example will output "Have a nice weekend!" if the current day is Friday, otherwise

it will output "Have a nice day!":

if (condition)

code to be executed if condition is true;

else

code to be executed if condition is false;

18 | P a g e

 PhpT Point, Simply Easy Learning

If more than one line should be executed if a condition is true/false, the lines should be

enclosed within curly braces:

The ElseIf Statement

If you want to execute some code if one of several conditions are true use the elseif statement

Syntax

Example

The following example will output "Have a nice weekend!" if the current day is Friday, and "Have

a nice Sunday!" if the current day is Sunday. Otherwise it will output "Have a nice day!":

<html>

<body>

<?php

$d=date("D");

if ($d=="Fri")

echo "Have a nice weekend!";
elseif ($d=="Sun")

echo "Have a nice Sunday!";
else

echo "Have a nice day!";

?>

</body>

</html>

if (condition)

code to be executed if condition is true;

elseif (condition)

code to be executed if condition is true;

else

code to be executed if condition is false;

<html>

<body>

<?php

$d=date("D");

if ($d=="Fri")

{

echo "Hello!
";

echo "Have a nice weekend!";
echo "See you on Monday!";

}

?>

</body>

</html>

<html>

<body>

<?php

$d=date("D");

if ($d=="Fri")

echo "Have a nice weekend!";
else

echo "Have a nice day!";

?>

</body>

</html>

19 | P a g e

 PhpT Point, Simply Easy Learning

The Switch Statement

If you want to select one of many blocks of code to be executed, use the Switch statement.

The switch statement is used to avoid long blocks of if..elseif..else code.

Syntax

Example

The switch statement works in an unusual way. First it evaluates given expression then seeks a

lable to match the resulting value. If a matching value is found then the code associated with

the matching label will be executed or if none of the lables match then statement will execute

any specified default code.

<html>

<body>

<?php

$d=date("D");
switch ($d)

{

case "Mon":

echo "Today is Monday";
break;

case "Tue":

echo "Today is Tuesday";
break;

case "Wed":

echo "Today is Wednesday";
break;

case "Thu":

echo "Today is Thursday";
break;

case "Fri":

echo "Today is Friday";
break;

case "Sat":

echo "Today is Saturday";
break;

case "Sun":

echo "Today is Sunday";
break;

default:

echo "Wonder which day is this ?";

}

?>
</body>

switch (expression)

{

case label1:

code to be executed if expression = label1;

break;
case label2:

code to be executed if expression = label2;

break;

default:

code to be executed

if expression is different
from both label1 and label2;

}

20 | P a g e

 PhpT Point, Simply Easy Learning

PHP Loop Types

Loops in PHP are used to execute the same block of code a specified number of times. PHP

supports following four loop types.

 for - loops through a block of code a specified number of times.

 while - loops through a block of code if and as long as a specified condition is true.

 do...while - loops through a block of code once, and then repeats the loop as long as a

special condition is trur.

 foreach - loops through a block of code for each element in an array.

We will discuss about continue and break keywords used to control the loops execution.

The for loop statement

The for statement is used when you know how many times you want to execute a statement or

a block of statements.

Syntax

The initializer is used to set the start value for the counter of the number of loop iterations. A

variable may be declared here for this purpose and it is traditional to name it $i.

Example

The following example makes five iterations and changes the assigned value of two variables on

each pass of the loop:

This will produce following result:

At the end of the loop a=50 and b=25

<html>

<body>

<?php

$a = 0;

$b = 0;

for($i=0; $i<5; $i++)

{

$a += 10;

$b += 5;

}

echo ("At the end of the loop a=$a and b=$b");

?>

</body>

</html>

for (initialization; condition; increment)

{

code to be executed;

}

</html>

21 | P a g e

 PhpT Point, Simply Easy Learning

The while loop statement

The while statement will execute a block of code if and as long as a test expression is true.

If the test expression is true then the code block will be executed. After the code has executed

the test expression will again be evaluated and the loop will continue until the test expression is

found to be false.

Syntax

Example

This example decrements a variable value on each iteration of the loop and the counter

increments until it reaches 10 when the evaluation is false and the loop ends.

This will produce following result:

The do...while loop statement

The do...while statement will execute a block of code at least once - it then will repeat the loop

as long as a condition is true.

Syntax

Example

The following example will increment the value of i at least once, and it will continue

incrementing the variable i as long as it has a value of less than 10:

do

{

code to be executed;

}while (condition);

Loop stopped at i = 1 and num = 40

<html>

<body>

<?php

$i = 0;

$num = 50;

while($i < 10)

{

$num--;

$i++;

}

echo ("Loop stopped at i = $i and num = $num");

?>

</body>

</html>

while (condition)

{

code to be executed;

}

22 | P a g e

 PhpT Point, Simply Easy Learning

This will produce following result:

The foreach loop statement

The foreach statement is used to loop through arrays. For each pass the value of the current
array element is assigned to $value and the array pointer is moved by one and in the next pass

next element will be processed.

Syntax

Example

Try out following example to list out the values of an array.

This will produce following result:

Value is 1

Value is 2

Value is 3

Value is 4

Value is 5

<html>

<body>

<?php

$array = array(1, 2, 3, 4, 5);
foreach($array as $value)

{

echo "Value is $value
";

}

?>

</body>

</html>

foreach (array as value)

{

code to be executed;

}

Loop stopped at i = 10

<html>

<body>

<?php

$i = 0;

$num = 0;
do

{

$i++;

}while($i < 10);

echo ("Loop stopped at i = $i");

?>

</body>

</html>

23 | P a g e

 PhpT Point, Simply Easy Learning

The break statement

The PHP break keyword is used to terminate the execution of a loop prematurely.

The break statement is situated inside the statement block. If gives you full control and

whenever you want to exit from the loop you can come out. After coming out of a loop

immediate statement to the loop will be executed.

Example

In the following example condition test becomes true when the counter value reaches 3 and

loop terminates.

This will produce following result:

The continue statement

The PHP continue keyword is used to halt the current iteration of a loop but it does not

terminate the loop.

Just like the break statement the continue statement is situated inside the statement block

containing the code that the loop executes, preceded by a conditional test. For the pass

encountering continue statement, rest of the loop code is skipped and next pass starts.

Example

In the following example loop prints the value of array but for which condition becomes true it
just skip the code and next value is printed.

<html>

<body>

<?php

$array = array(1, 2, 3, 4, 5);
foreach($array as $value)

{

if($value == 3)continue;
echo "Value is $value
";

Loop stopped at i = 3

<html>

<body>

<?php

$i = 0;

while($i < 10)

{

$i++;

if($i == 3)break;

}

echo ("Loop stopped at i = $i");

?>

</body>

</html>

24 | P a g e

 PhpT Point, Simply Easy Learning

This will produce following result

PHP Arrays

An array is a data structure that stores one or more similar type of values in a single value. For

example if you want to store 100 numbers then instead of defining 100 variables its easy to

define an array of 100 length.

There are three different kind of arrays and each array value is accessed using an ID c which is

called array index.

 Numeric array - An array with a numeric index. Values are stored and accessed in

linear fashion

 Associative array - An array with strings as index. This stores element values in

association with key values rather than in a strict linear index order.

 Multidimensional array - An array containing one or more arrays and values are

accessed using multiple indices

Numeric Array

These arrays can store numbers, strings and any object but their index will be prepresented by

numbers. By default array index starts from zero.

Example

Following is the example showing how to create and access numeric arrays.

Here we have used array() function to create array. This function is explained in function

reference.

<html>

<body>

<?php

/* First method to create array. */

$numbers = array(1, 2, 3, 4, 5);
foreach($numbers as $value)

{

echo "Value is $value
";

}

/* Second method to create array. */

$numbers[0] = "one";

$numbers[1] = "two";

Value is 1

Value is 2

Value is 4

Value is 5

}

?>

</body>

</html>

25 | P a g e

 PhpT Point, Simply Easy Learning

This will produce following result:

Associative Arrays

The associative arrays are very similar to numeric arrays in term of functionality but they are

different in terms of their index. Associative array will have their index as string so that you can

establish a strong association between key and values.

To store the salaries of employees in an array, a numerically indexed array would not be the

best choice. Instead, we could use the employees names as the keys in our associative array,
and the value would be their respective salary.

NOTE: Don't keep associative array inside double quote while printing otheriwse it would not
return any value.

Example

<html>

<body>

<?php

/* First method to associate create array. */

$salaries = array(

"mohammad" => 2000,

"qadir" => 1000,

"zara" => 500

);

echo "Salary of mohammad is ". $salaries['mohammad'] . "
";
echo "Salary of qadir is ". $salaries['qadir']. "
";

echo "Salary of zara is ". $salaries['zara']. "
";

/* Second method to create array. */

$salaries['mohammad'] = "high";

$salaries['qadir'] = "medium";

$salaries['zara'] = "low";

echo "Salary of mohammad is ". $salaries['mohammad'] . "
";
echo "Salary of qadir is ". $salaries['qadir']. "
";

Value is 1

Value is 2

Value is 3

Value is 4

Value is 5
Value is one
Value is two
Value is three
Value is four
Value is five

$numbers[2] = "three";

$numbers[3] = "four";

$numbers[4] = "five";

foreach($numbers as $value)

{

echo "Value is $value
";

}

?>

</body>

</html>

26 | P a g e

 PhpT Point, Simply Easy Learning

This will produce following result:

Multidimensional Arrays

A multi-dimensional array each element in the main array can also be an array. And each

element in the sub-array can be an array, and so on. Values in the multi-dimensional array are

accessed using multiple index.

Example

In this example we create a two dimensional array to store marks of three students in three

subjects:

This example is an associative array, you can create numeric array in the same fashion.

<html>

<body>

<?php

$marks = array(

"mohammad" => array
(

"physics" => 35,

"maths" => 30,

"chemistry" => 39

),

"qadir" => array
(

"physics" => 30,

"maths" => 32,

"chemistry" => 29

),

"zara" => array
(

"physics" => 31,

"maths" => 22,

"chemistry" => 39

)

);

/* Accessing multi-dimensional array values */
echo "Marks for mohammad in physics : " ;

echo $marks['mohammad']['physics'] . "
";
echo "Marks for qadir in maths : ";

echo $marks['qadir']['maths'] . "
";
echo "Marks for zara in chemistry : " ;
echo $marks['zara']['chemistry'] . "
";

?>

</body>

</html>

Salary of mohammad is 2000
Salary of qadir is 1000
Salary of zara is 500
Salary of mohammad is high
Salary of qadir is medium
Salary of zara is low

echo "Salary of zara is ". $salaries['zara']. "
";

?>

</body>

</html>

27 | P a g e

 PhpT Point, Simply Easy Learning

This will produce following result:

PHP Strings

They are sequences of characters, like "PHP supports string operations".

Following are valid examples of string

Singly quoted strings are treated almost literally, whereas doubly quoted strings replace

variables with their values as well as specially interpreting certain character sequences.

This will produce following result:

There are no artificial limits on string length - within the bounds of available memory, you ought
to be able to make arbitrarily long strings.

Strings that are delimited by double quotes (as in "this") are preprocessed in both the following

two ways by PHP:

 Certain character sequences beginning with backslash (\) are replaced with special
characters

 Variable names (starting with $) are replaced with string representations of their

values.

The escape-sequence replacements are:

 \n is replaced by the newline character

 \r is replaced by the carriage-return character

 \t is replaced by the tab character

 \$ is replaced by the dollar sign itself ($)

 \" is replaced by a single double-quote (")

My $variable will not print!\n
My name will print

<?

$variable = "name";

$literally = 'My $variable will not print!\\n';
print($literally);

$literally = "My $variable will print!\\n";
print($literally);

?>

$string_1 = "This is a string in double quotes";

$string_2 = "This is a somewhat longer, singly quoted string";

$string_39 = "This string has thirty-nine characters";

$string_0 = ""; // a string with zero characters

Marks for mohammad in physics : 35
Marks for qadir in maths : 32
Marks for zara in chemistry : 39

28 | P a g e

 PhpT Point, Simply Easy Learning

 \\ is replaced by a single backslash (\)

String Concatenation Operator

To concatenate two string variables together, use the dot (.) operator:

This will produce following result:

If we look at the code above you see that we used the concatenation operator two times. This is

because we had to insert a third string.

Between the two string variables we added a string with a single character, an empty space, to

separate the two variables.

Using the strlen() function

The strlen() function is used to find the length of a string.

Let's find the length of our string "Hello world!":

This will produce following result:

The length of a string is often used in loops or other functions, when it is important to know

when the string ends. (i.e. in a loop, we would want to stop the loop after the last character in

the string)

Using the strpos() function

The strpos() function is used to search for a string or character within a string.

If a match is found in the string, this function will return the position of the first match. If no

match is found, it will return FALSE.

Let's see if we can find the string "world" in our string:

<?php

echo strpos("Hello world!","world");

?>

12

<?php

echo strlen("Hello world!");

?>

Hello World 1234

<?php

$string1="Hello World";

$string2="1234";

echo $string1 . " " . $string2;

?>

29 | P a g e

 PhpT Point, Simply Easy Learning

This will produce following result:

As you see the position of the string "world" in our string is position 6. The reason that it is 6,
and not 7, is that the first position in the string is 0, and not 1.

PHP File Inclusion

You can include the content of a PHP file into another PHP file before the server executes it.
There are two PHP functions which can be used to included one PHP file into another PHP file.

 The include() Function

 The require() Function

This is a strong point of PHP which helps in creating functions, headers, footers, or elements

that can be reused on multiple pages. This will help developers to make it easy to change the

layout of complete website with minimal effort. If there is any change required then instead of
changing thousand of files just change included file.

The include() Function

The include() function takes all the text in a specified file and copies it into the file that uses the

include function. If there is any problem in loading a file then the include() function generates

a warning but the script will continue execution.

Assume you want to create a common menu for your website. Then create a file menu.php with

the following content.

Now create as many pages as you like and include this file to create header. For example now

your test.php file can have following content.

This will produce following result

The require() Function

The require() function takes all the text in a specified file and copies it into the file that uses the

Home - ebXML - AJAX - PERL

This is an example to show how to include PHP file. You can include mean.php file in as many

as files you like!

<html>

<body>

<?php include("menu.php"); ?>

<p>This is an example to show how to include PHP file!</p>

</body>

</html>

Home -

ebXML -

AJAX -

PERL

6

http://www.tutorialspoint.com/index.htm
http://www.tutorialspoint.com/ebxml
http://www.tutorialspoint.com/ajax
http://www.tutorialspoint.com/perl
http://www.tutorialspoint.com/index.htm
http://www.tutorialspoint.com/ebxml
http://www.tutorialspoint.com/ajax
http://www.tutorialspoint.com/perl

30 | P a g e

 PhpT Point, Simply Easy Learning

include function. If there is any problem in loading a file then the require() function generates

a fatal error and halt the excution of the script.

So there is no difference in require() and include() except they handle error conditions. It is

recommended to use the require() function instead of include(), because scripts should not
continue executing if files are missing or misnamed.

You can try using above example with require() function and it will generate same result. But if
you will try following two examples where file does not exist then you will get different results.

This will produce following result

Now lets try same example with require() function.

This time file execution halts and nothing is displayed.

NOTE: You may get plain warning messages or fatal error messages or nothing at all. This

depends on your PHP Server configuration.

PHP Files & I/O

This chapter will explain following functions related to files:

 Opening a file

 Reading a file

 Writing a file

 Closing a file

Opening and Closing Files

The PHP fopen() function is used to open a file. It requires two arguments stating first the file

name and then mode in which to operate.

Files modes can be specified as one of the six options in this table.

Mode Purpose

<html>

<body>

<?php require("xxmenu.php"); ?>

<p>This is an example to show how to include wrong PHP file!</p>

</body>

</html>

This is an example to show how to include wrong PHP file!

<html>

<body>

<?php include("xxmenu.php"); ?>

<p>This is an example to show how to include wrong PHP file!</p>

</body>

</html>

31 | P a g e

 PhpT Point, Simply Easy Learning

r Opens the file for reading only.

Places the file pointer at the beginning of the file.

r+ Opens the file for reading and writing.

Places the file pointer at the beginning of the file.

w Opens the file for writing only.

Places the file pointer at the beginning of the file.

and truncates the file to zero length. If files does not

exist then it attemts to create a file.

w+ Opens the file for reading and writing only.

Places the file pointer at the beginning of the file.

and truncates the file to zero length. If files does not

exist then it attemts to create a file.

a Opens the file for writing only.

Places the file pointer at the end of the file.

If files does not exist then it attemts to create a file.

a+ Opens the file for reading and writing only.

Places the file pointer at the end of the file.

If files does not exist then it attemts to create a file.

If an attempt to open a file fails then fopen returns a value of false otherwise it returns a file

pointer which is used for further reading or writing to that file.

After making a changes to the opened file it is important to close it with the fclose() function.
The fclose() function requires a file pointer as its argument and then returns true when the

closure succeeds or false if it fails.

Reading a file

Once a file is opened using fopen() function it can be read with a function called fread(). This

function requires two arguments. These must be the file pointer and the length of the file

expressed in bytes.

The files's length can be found using the filesize() function which takes the file name as its

argument and returns the size of the file expressed in bytes.

So here are the steps required to read a file with PHP.

 Open a file using fopen() function.

 Get the file's length using filesize() function.

 Read the file's content using fread() function.

 Close the file with fclose() function.

The following example assigns the content of a text file to a variable then displays those

contents on the web page.

<html>

32 | P a g e

 PhpT Point, Simply Easy Learning

Writing a file

A new file can be written or text can be appended to an existing file using the

PHP fwrite()function. This function requires two arguments specifying a file pointer and the

string of data that is to be written. Optionally a third intger argument can be included to specify

the length of the data to write. If the third argument is included, writing would will stop after

the specified length has been reached.

The following example creates a new text file then writes a short text heading insite it. After

closing this file its existence is confirmed using file_exist() function which takes file name as

an argument

<?php

$filename = "/home/user/guest/newfile.txt";

$file = fopen($filename, "w");
if($file == false)

{

echo ("Error in opening new file");
exit();

}

fwrite($file, "This is a simple test\n");
fclose($file);

?>

<html>

<head>

<title>Writing a file using PHP</title>

</head>

<body>

<?php

if(file_exist($filename))

{

$filesize = filesize($filename);

$msg = "File created with name $filename ";

$msg .= "containing $filesize bytes";
echo ($msg);

}

<head>

<title>Reading a file using PHP</title>

</head>

<body>

<?php

$filename = "/home/user/guest/tmp.txt";

$file = fopen($filename, "r");
if($file == false)

{

echo ("Error in opening file");
exit();

}

$filesize = filesize($filename);

$filetext = fread($file, $filesize);

fclose($file);

echo ("File size : $filesize bytes");
echo ("<pre>$text</pre>");

?>

</body>

</html>

33 | P a g e

 PhpT Point, Simply Easy Learning

PHP Functions

PHP functions are similar to other programming languages. A function is a piece of code which

takes one more input in the form of parameter and does some processing and returns a value.

You already have seen many functions like fopen() and fread() etc. They are built-in functions

but PHP gives you option to create your own functions as well.

There are two parts which should be clear to you:

 Creating a PHP Function

 Calling a PHP Function

In fact you hardly need to create your own PHP function because there are already more than

1000 of built-in library functions created for different area and you just need to call them

according to your requirement.

Creating PHP Function:

Its very easy to create your own PHP function. Suppose you want to create a PHP function which

will simply write a simple message on your browser when you will call it. Following example

creates a function called writeMessage() and then calls it just after creating it.

Note that while creating a function its name should start with keyword function and all the PHP

code should be put inside { and } braces as shown in the following example below:

This will display following result:

<html>

<head>

<title>Writing PHP Function</title>

</head>

<body>

<?php

/* Defining a PHP Function */

function writeMessage()

{

echo "You are really a nice person, Have a nice time!";

}

/* Calling a PHP Function */

writeMessage();

?>

</body>

</html>

else

{

echo ("File $filename does not exit");

}

?>

</body>

</html>

34 | P a g e

 PhpT Point, Simply Easy Learning

PHP Functions with Parameters:

PHP gives you option to pass your parameters inside a function. You can pass as many as

parameters your like. These parameters work like variables inside your function. Following

example takes two integer parameters and add them together and then print them.

This will display following result:

Passing Arguments by Reference:

It is possible to pass arguments to functions by reference. This means that a reference to the

variable is manipulated by the function rather than a copy of the variable's value.

Any changes made to an argument in these cases will change the value of the original variable.
You can pass an argument by reference by adding an ampersand to the variable name in either

the function call or the function definition.

Following example depicts both the cases.

<html>

<head>

<title>Passing Argument by Reference</title>

</head>

<body>

<?php

function addFive($num)

{

$num += 5;

}

function addSix(&$num)

{

$num += 6;

}

$orignum = 10;
addFive(&$orignum);

echo "Original Value is $orignum
";
addSix($orignum);

Sum of the two numbers is : 30

<html>

<head>

<title>Writing PHP Function with Parameters</title>

</head>

<body>

<?php

function addFunction($num1, $num2)

{

$sum = $num1 + $num2;

echo "Sum of the two numbers is : $sum";

}

addFunction(10, 20);

?>

</body>

</html>

You are really a nice person, Have a nice time!

35 | P a g e

 PhpT Point, Simply Easy Learning

This will display following result:

PHP Functions returning value:

A function can return a value using the return statement in conjunction with a value or object.
return stops the execution of the function and sends the value back to the calling code.

You can return more than one value from a function using return array(1,2,3,4).

Following example takes two integer parameters and add them together and then returns their

sum to the calling program. Note that return keyword is used to return a value from a function.

This will display following result:

Setting Default Values for Function Parameters:

You can set a parameter to have a default value if the function's caller doesn't pass it.

Following function prints NULL in case use does not pass any value to this function.

<html>

<head>

<title>Writing PHP Function which returns value</title>

</head>

<body>

<?php

function printMe($param = NULL)
{

Returned value from the function : 30

<html>

<head>

<title>Writing PHP Function which returns value</title>

</head>

<body>

<?php

function addFunction($num1, $num2)

{

$sum = $num1 + $num2;

return $sum;

}

$return_value = addFunction(10, 20);

echo "Returned value from the function : $return_value

?>

</body>

</html>

Original Value is 15
Original Value is 21

echo "Original Value is $orignum
";

?>

</body>

</html>

36 | P a g e

 PhpT Point, Simply Easy Learning

This will produce following result:

Dynamic Function Calls:

It is possible to assign function names as strings to variables and then treat these variables

exactly as you would the function name itself. Following example depicts this behaviour.

This will display following result:

For complete Tutorial: http://www.phptpoint.com/

Hello

<html>

<head>

<title>Dynamic Function Calls</title>

</head>

<body>

<?php

function sayHello()

{

echo "Hello
";

}

$function_holder = "sayHello";

$function_holder();

?>

</body>

</html>

This is test

print $param;

}

printMe("This is test");
printMe();

?>

</body>

</html>

http://www.phptpoint.com/

37 | P a g e

 PhpT Point, Simply Easy Learning

